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J. Phys. A: Math. Gen. 18 (1985) 2141-2149. Printed in Great Britain 

Efficient solution of differential equations by analytic 
continuation 

A Holubec and A D Stauffer 
Physics Department, York University, Downsview, Ontario, Canada M3J 1P3 

Received 19 February 1985 

Abstract. A new method is described for the automatic solution of linear ordinary differen- 
tial equations by the use of Taylor series. This new method is shown to be superior in 
speed and accuracy to conventional methods. The method is illustrated for Coulomb 
wavefunctions, confluent hypergeometric functions, zeros of Bessel functions and s-wave 
phaseshift for e-H scattering in the static approximation. 

1. Introduction 

The basic idea of the method developed in this paper is very old since it is founded 
on Cauchy’s method of limits, (Cauchy 1835) and, according to Ince (1927), the essence 
of the method goes back to Euler (1768). The standard method can be described as 
follows. Given a differential equation (DE) with initial values specified at zo we 
approximate the solution in the neighbourhood of zo by a truncated Taylor series, 
where the values of the derivatives evaluated at zo are determined from successive 
differentiations of the DE. A new Taylor series about z ,  = zo+ h is then constructed 
from the derivatives of the first, and so on. In this way we obtain an analytic 
continuation of the solution of the DE along a polygonal path {z,, z , ,  z 2 , .  . .}. 

One difficulty with this method is the evaluation of the Taylor coefficients by 
successive differentiation of the DE. In practical terms it means that one has to construct 
a subroutine for the Taylor coefficients for each DE. This is rather inconvenient, since 
the coefficients rapidly increase in complexity. Attempts have been made to automatise 
this process (see, for example, Wilson 1949, Gibons 1960, Leavitt 1966, Barton et al 
1971, Corliss and Chang 1982, Gofen 1982). 

Another difficulty arises if the DE has singularities anywhere in the complex z plane. 
Then the radius of convergence of its Taylor series about zo is equal to the distance 
to the closest singularity. Therefore if a singularity is close to zo we need a truncated 
Taylor series with a great number of terms to achieve a given accuracy with a preset 
step size. In some cases even a 100-term series is not long enough (Chang 1974). In 
Corliss and Lowery (1977) some estimates are given for the radius of convergence of 
a long Taylor series in the presence of a singularity. This latter difficulty is very serious 
because the majority of ODES of mathematical physics are linear DES of the second 
order with a regular singularity at the origin. 

In this paper we propose a modification of the method which avoids both the above 
mentioned difficulties. The idea is to continue analytically a Frobenius series rather 
than a Taylor series. For simplicity we choose the most frequent case, i.e. a second-order 
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linear DE with a regular singularity and with analytic coefficients which are finite 
polynomials. Of course the method works for arbitrary order and, as we shall see, for 
more general analytic coefficients than finite polynomials. 

The main advantages of this method are great accuracy, stability and speed. The 
relative speed, i.e. the speed with respect to the speed of classical integration methods 
for DE (Adams, Runge-Kutta, Milne, Hamming, etc) which are based on polynomial 
interpolation, is greater, the greater the required accuracy. Moreover, the truncated 
series forms a polynomial approximation to the solution which can be evaluated at 
any point in the neighbourhood Iz - zo/ < h with preset precision. Also, because 
polynomials are very easy to handle, we can evaluate derivatives and integrals of the 
solution or find zeros of the solution in a straightforward manner. 

2. Analytic continuation 

Consider the second-order linear DE 

z 2 u " + z P ( z ) u ' +  Q ( z ) u  =o .  (2 .1)  
Assuming P (  z )  and Q ( z )  to be finite polynomials, i.e. deg P = p < 00 and deg Q = q < m, 
we have 

P P 

P ( z ) =  P,z '= F t ( Z - Z o ) '  
i = O  r = O  

We can find the coefficients 6, and F, exactly in a finite number of steps by the 
following algorithm (generalised Horner's rule; see, for example, Knuth 1981 ) 

Ij, + P, 
6 6 + Z o 6 + ,  

for i = O( 1 ) p  

for i = O( 1 ) p  - 1 , j  = p - 1(-1)i. 
(2.3) 

Now writing z = ( z - z o ) + z o  and z 2 = ( z - z o ) 2 + 2 z o ( z - z o ) + z ~  we rewrite (2 .1)  as 

[ ( z - ~ 0 ) ~  + 2 ~ , (  z - 2 0 )  + z;]u" + [ ( z - z O )  + z O ]  (2 .4)  
First assume the characteristic exponent r of the Frobenius expansion to be equal to 
zero. Then the solution is of the form 

F, ( z - z ~ ) ' u ' +  1 0, ( z - z ~ ) ' u  = 0. 

U = c c, ( 2  - zo)'.  (2.5) 
Substituting (2.5) into (2.4) we get 

i=O,  1 ,2  , . . . .  
j = m a x (  1 , i -p+ l )  j=max(O.i-qI 
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Thus starting the solution by a Frobenius expansion (see the appendix) about the 
origin we can continue this solution using (2.6), to arbitrary points zo in the complex 
plane. 

If the characteristic exponent is different from zero we can reduce this case to the 
previous one. Let r E { r l ,  r z }  be a characteristic exponent and assume first that rl - rz 
is not an integer. Then two independent solutions are of the form 

U = z‘f(z) r E { r l ,  r2) (2.7) 

z 2 ~ + z ( 2 r + ~ ( z ) ) f ’ + [ r ( r - 1 ) + r ~ ( z ) + 0 ( z ) l f = ~ .  (2.8) 

where f ( z )  is an analytic function. Substituting (2.7) into (2.1) we obtain 

Now the coefficients Fi and di in 

r=O 

and 
max(p,q) 

r ( r - l ) + r P ( z ) + Q ( z ) =  C ~ , ( Z - Z , ) ~  
, = o  

are calculated as above and using (2.6) we get a Taylor polynomial for f ( z ) .  
Lastly, if rl - r2 = n is an integer then 

U1 = zrlf,(z) (2.9) 

uz = Cu, In( z )  + z‘2f2( z )  (2.10) 

where f l  is calculated as above and 

(see the appendix, formula (A8), for the determination of the constant C). Substituting 
(2.10) into (2.1) we get 

(2.11) 

Let this be equal to -G( z),  say. If n = 0, i.e. rI = rz = r, thenf2( z) = z 2 c,zI and therefore 
it is advantageous to write zf2 instead of f 2  in (2.11) and we get 

z2f;’+ z[2( r + 1) + P (  z)]f;+[( r +  l ) r +  ( r  + 1 ) P ( z )  + O(z)]f2 

(2.12) 

(2.13) 

where the G, are evaluated from (2.11) or (2.12). Again the coefficients Ft and dz in 
the expansion of the coefficients of f 2  and f ;  in (2.11) or (2.12) can be calculated as 
above and the coefficients c, in 

(2.14) fz (z)  = c c,(z - Zo)I 

are given by 

CO =fz(zo) C l  =fXzo) 

~ , + 2  = - ( F ,  + GI) /  z:( i + 2)( i + 1) 
(2.15) 

i = o ,  1 , 2 , ,  , , 

where F, are the same as in the formula after (2.6) 
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3. Examples 

3.1. Coulomb wavefunctions 

The DE for the Coulomb wavefunction of order L in normal Forbenius form is 

z2 U ” + [ - L( L + 1 ) - 2 7)z + z’] U = 0. (3 .1 )  

The expansion about zero is (for the regular solution) 

FL( 7, z )  = a , z i+r  r = L + 1  

where 
a, = (277a,-, - ~ , - ~ ) / i ( i + 2 L +  1) 

a, = 2 L  exp( - 4 2 ) / r (  L + 1 + i 7)l/r( 2L + 2). 

The expansion about z,  is 

FL(71 , z )=cc , ( z - -o ) I  

where 
c, = 0 for i < O  

C O =  U ( Z 0 )  

CI = U’( 2 0 )  

c, +i = - { 2 z,  i (  i + 1 ) c, + + [( i - 1 ) i - L( L + 1 ) - 2 7 z o  + zzO]c, 

+ 2( zo - ~ ) c , - ,  + c , -* } /  z i(  i + I ) (  i + 2) i =0,  1 , 2 , .  

(3.2) 

(3.3) 

(3.4) 

(3.5) 

The results for L = 0, 77 = z = 1 are shown in table 1. For simplicity we put n = N, 
where n is the number of points on [0, 1 3  and N is the degree of Taylor polynomial. 

Note that only correct digits are shown. Thus we see from table 1 that for n = N = 17 
we have achieved the accuracy of Barnett (1982). His algorithm, based on the original 
work by Steed (1967), computes the logarithmic derivative F’J FL from continued 
fractions. This algorithm which is efficient if xL<< x, where x L  = 7) + [ 72+ L( L+ 1)]1’2 
is the classical turning point, needs hundreds of terms if x 6 x L  and does not work for 

Table 1. Results for the Coulomb wavefunction F o ( l ,  1 )  (i.e. L =  0, 77 = z = 1). N is the 
degree of the Taylor polynomial used and is also the number of points in [0, 11. 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0.227 526 210 510 560 0 
0.227 52621051056002923 
0.227 526 210 510 560 029 239 
0.227526210510560029239295 
0.227526210510560029239295890 
0.227 526210510560029239295 89088 
0.22752621051056002923929589088914 
0.227 526 210 510 560 029 239 295 890 889 146 
0.227 526 210 510 560 029 239 295 890 889 146 
0.227 526210510560029239295 890889146 

Barnett (1982) 0.227 526 210 510 560 029 239 295 890 889 1 
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x c  xfi On the other hand, our Taylor series algorithm works on the whole interval 
with the same efficiency. 

In figure 1 we compare the speed of our Taylor series method with that of the 
Numerov method for this same function. 

lg lobsolute error1 

Figure 1. Number of multiplications required for calculation of Fo(l,,l) to the accuracy 
shown. - - -, solution by Numerov’s method; -, solution by present method. N denotes 
the order of the Taylor polynomial. 

3.2. Confluent hypergeometric functions 

Kummer’s equation is 

ZU”+ ( b  - z)u’-  au = O  (3.6) 

M ( a ,  b, z ) = C  c , ( z - z ~ ) ’  (3.7) 

CO = M ( a ,  b, zo) (3.8) 

c , + ~  =[(zo- i - b ) ( i +  l ) ~ , + ~  + ( i +  a )c , ] / zo ( i+2) ( i+  1) 

with regular solution 

where 

C ]  = M’( U,  b, z O )  

and irregular solution U ( a ,  b, z )  which, for a = b = 1 ,  for which case rl = r2 = 0,  can 
be written 

U ( 1 , 1 ,  z )  = -exp(z) In(z)+zf , (z)  (3.9) 
where 

f 2 ( z )  = C C I ( Z  - zo)’ (3.10) 

CO = f*( 20) c1 = f i ( z o )  c, = 0 for i < O  (3 .11)  
and 

c , + ~  = -{ zo( i + I ) (  2 i + 3 - zo)  c,,, + [ ( i + - 2z0( i + l ) ] c ,  

- ( i  + ~ ) c , - ~  exp zo/ i !}/& i + 2)( i + 1 )  
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are found from direct substitution of (3.9) into (3.6). We integrated (3.6) along the 
ray z = r exp i(17/30) (1 S r s  7) in the second quadrant with the step size h = 
& exp i( 17/30) and a Taylor polynomial of degree N = 25. 

Because tables of U(l,l, z) of comparable accuracy are not available we have 
checked our values using the algorithm of Beam (1960) which is based on the well 
known continued fraction representation of U(1,1, z). This continued fraction 
algorithm (CFA) which is efficient if / z ]  >> T, where T = 21’2 - 1 is the classical turning 
point, needs thousands of terms if 1 ~ 1 %  T and does not work for IzI<< T. Thus the 
situation is very similar to that of the Coulomb wavefunction which we discussed 
above. The results for our algorithm are shown in table 2. The computation of 
successive convergents of the CFA was stopped when they differed by less than 
(This, of course, does not imply that the error is less than Note that the CFA 

is more efficient only for very large IzI and only for the first point in a given region. 
In the present method storing the values of the coefficients of the Taylor polynomials 
for given a region enables us to calculate U(1,1, z) at any point within the region 
with at most 25 multiplications. 

Table 2. Results for the confluent hypergeometric function U(1, 1, z )  using a Taylor 
polynomial of degree 25 for z = r exp i(17/30). Here n is the number of terms in the CFA 
required to get comparable accuracy. 

r Re U Im U n 

1 0 .265140373591172527085689417226693F-00 -0 .699914570363053710739591235609459E+00 1623 
2 0.790476820526539385287739720 110070F.-O1 -0.438591626614630913524543913543972€+00 819 
3 0258451523285909629858367889673286E-01 -0.314763918480468468 171503430628676E+00 548 
4 0.542272001458179742971758644531812E-0? 41 2 
5 -0.357 263 158 526 021 190 204 549 759 002 l52E - 02 330 
6 -0 .780223375633228686260875533211722E-02 -0,165 809415 I96983 651 085 002 821 795 384E+00 275 
7 -0.981063377977311618253562227697801E-02 -0,142602773 767741 852565 186933206512€+00 236 

-0.243 462 234 697 021 961 596 538 284 522 224E + 00 
-0.197585636738600911 244633704818831E+00 

3.3. Zeros of J J x )  

In this example we illustrate another of the advantages of our method. Here we have 
used the Taylor series method to find an approximation to J,(x) and then used the 
approximate function to evaluate its zeros. Since we can calculate u”(z) during the 
integration process with very little additional effort, zeros have been computed itera- 
tively using Laguerre’s method (Laguerre 1880, Parlett 1964). This method converges 
cubically and we have never needed more than four iterations to get 32s accuracy. 

Let f(z) be a Taylor polynomial of degree p .  (In our calculations 20 S p s 2 5 . )  
Then the Laguerre iterate for z which is a zero of f(z) is given by 

ztz- 

The first five zeros of J 1 / 3 ( ~ )  have been calculated using (3.12) where f is defined 
by (2.8) with r = f .  These were calculated using step size h =& and are shown in 
table 3. In fact we have calculated the first 100 zeros of J , ( x )  and FL( 7, x) for different 
values of v, 7 and L. These calculations confirm the results of Gerber (1964), who 
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calculated the first one hundred zeros of J o ( X )  to 19 digits accuracy and Ikebe (1975) 
(first five zeros of FL( 7, x) ,  L = 0 , l ;  7 = 0,1,2,4,8,16;  10 digit accuracy). We believe 
the minimum accuracy of the calculated zeros to be 30 significant digits. The tables 
are freely available from the authors to any interested persons. 

Table 3. Zeros of J , , , ( x )  where x, denotes the nth zero. 

1 0 .290258624841695248022426195312381E+0l  
2 0.603274705726584195936781151263709E+01 
3 0.917050666946388776809000306821929E+01 
4 0.123 101937716449286113022899742393E+02  
5 0.154506489678 171220193971281331899E+02 

3.4. Phaseshifts 

Here we show that the present method works for more general P ( z )  and Q(z)  than 
finite polynomials. The radial scattering equation for electron scattering from the static 
potential of hydrogen, V( r )  = -(2 + 2/ r )  exp( -2r), in normal Forbenius form is given 

z2u"+  Q(z)u = 0 (3.13) 

by 

where 

Q(z)  = -L (L+ 1 ) +  k2z2+(2z2+2z)  exp(-2z) (3.14) 

(Bransden 1970), or 

where 

Q o = - L ( L + l )  Q i = 2  Q2= k2-2 

Qi =2(-2)i-2(i -3) / (  i - l ) !  i 3 3  

and 

~ o = - L ( L + 1 ) + k 2 z ~ + 2 z o ( 1 + z o )  exp(-2zo) 

dl =2k2zo+(2-4zi)  exp(-2zo) 

d2 = k2 + (-2 - 4Z0+ 42;) exp(-2z,,) 

(3.15) 

(3.16) 

(3.17) 

where L represents the angular momentum of the electron and k its linear momentum. 
Values of the phaseshift 6o(k) ,  k = O.l(O.l)l, are shown in table 4 and agree with 

those given in Bransden (1970). This test shows only the absence of gross errors, since 
Bransden's results are given to at most four digits. From the analysis of the convergence 
with respect to both h and N we expect at least 30 digits accuracy. 
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Table 4. Phaseshift of electrons scattered from the static potential of hydrogen with zero 
angular momentum and linear momentum k 

k 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

U k )  

0.722219884989656960042797268119351E+OO 
0.972 521 479 187 175 394 865 553 553 455 166E+00 
O.l04555247629390166893343512251309E+OI 
0.105 749 666 553 219 405 253 251 065 370 165E +01 
0.104465983029150347277794358101542E+01 
0.102 103 193 307384370493627394278586E+01 
0.992902121194692056913 379991328390E+00 
O,963356548302217764398546682942943E+OO 
0.933965895184333 182027747689153385E+00 
0.905522948301 231 414580770433067 187E+00 

Appendix. Solution near the regular singular point 

It is convenient to write the DE with regular singularity at  z = 0 in the Frobenius normal 
form 

z 2 u " + z P ( z ) u ' + Q ( z ) u = 0  ( A l l  

where 

P ( z )  = P,z' O(z) = QJ' .  

We assume Pg+ Qi # 0. (If Po = Qo = 0 we can divide ( A l )  by z and proceed similarly.) 
Then a solution to ( A l )  is of the form 

U = z r  C a,z' { r , ,  r21 (A3) 

where r, and r2 are roots of the indicia1 equation 

r ( r  - 1 )  +Par+ Q, = 0 Re r, 3 Re r2 ('44) 

and the ai are given by 

-X.f;b[(r+j)P,-,+ Q~-, ]U,  

( r +  i ) ( r +  i - 1 )  + ( r +  i)Po+ Qo 
a, = a,= 1 

where r E { r , ,  r2}.  

form 
If r ,  - r2 = n is an integer and  n > 0, then the second independent solution is of the 

u2 = Cu, In( z )  + bizi+'2 ('46) 

where bo= 1 and 

-I;;=, (r2+i-j)P,+Q,lb,- ,  
( r2 + i)( r2 + i - 1) + ( r2 + i )  Po + Qo b, = O < i < n  ('47) 
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i - n  

C[2(r2+ i )  - l]ai-, + C 
j = O  

+ i [ ( r z +  i - j ) P , +  Q , ]b , ,  [ ( r 2 +  i ) ( r 2 +  i - 1) 
] = I  

+(r2+i)P0+QO]-'  i >  n, b, = 0. 

Lastly if n = 0 then rl = r2 = r, say, and we have 

u2 = Cu, In( z )  + bizi+'+' 

with 

c = 1/(2Q,-  POPI) 

and 

b, = - i [(  i - j +  r +  1)P,  + Q,]b,-, + C e+,ui-l + 2( i+  l )ai+,)]( i+ I)-' [ J = 1  ( J = o  

i = 1,2,3,, . . 
b o =  1 .  
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